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Abstract

This paper is the first attempt to successfully design efficient ap-

proximation algorithms for the single-machine maximum lateness min-

imization problem when jobs have different release dates and tails (or

delivery times) under the no-idle time assumption (i.e., the schedule

cannot contain any idle-time between two consecutive jobs on the ma-

chine). Our work is motivated by interesting industrial applications to

the production area (Chrétienne [3]). Our analysis shows that modifi-

cations of the classical algorithms of Potts and Schrage can lead to the

same worst-case performance ratios obtained for the relaxed problem

without the no-idle time constraint. Then, we extend the result devel-

oped by Mastrolilli [13] for such a relaxed problem and we propose a

polynomial time approximation scheme with efficient time complexity.

1 Introduction

We have a set J of n jobs J = {1, 2, ..., n}. Every job j has a processing

time pj, a release date rj and a tail (delivery time) qj . The jobs have to

be performed on a single machine under the no-idle time scenario, i.e., the

schedule should consist of a single block of jobs (non idle time between the

jobs). The machine can perform only one job at a given time. Preemption

is not allowed. The objective is to minimize the maximum lateness:

Lmax = max
1≤j≤n

{Cj + qj} (1)

where Cj is the completion time of job j.
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The studied problem is denoted by P and it can be represented by

1, NI|rj , qj|Lmax according to the classical 3-field notation. It consists of a

generalization of the well-known problem 1|rj , qj |Lmax already widely stud-

ied in the literature. In the remainder of this paper, the relaxed problem

1|rj , qj |Lmax without no-idle time constraint is denoted by P’. According to

Lenstra et al [12] problem P’ is NP-Hard in the strong sense. Since the NP-

hardness example in [12] contains no idle time, problem P is also NP-Hard

in the strong sense. Given the aim of this paper we give a short review on

the two mentioned problems.

The unconstrained version P’ has been intensively studied. For instance,

most of the exact algorithms are based on enumeration techniques. See for

instance the papers by Dessouky and Margenthaler [4], Baker and Su [1],

McMahon and Florian [14], Carlier et al [2], Larson et al [11] and Grabowski

et al [5]. Various approximation algorithms were also proposed. Most of

these algorithms are based on variations of the extended Schrage rule [17].

The Schrage rule consists of scheduling ready jobs (available jobs) on the

machine by giving priority to one having the greatest tail. It is well-known

that the Schrage sequence yields a worst-case performance ratio of 2. This

was first observed by Kise et al [10]. Potts [16] improves this result by run-

ning the Schrage algorithm at most n times to slightly varied instances. The

algorithm of Potts has a worst-case performance ratio of 3
2 and it runs in

O(n2 log n) time. Hall and Shmoys [6] showed that by modifying the tails

the algorithm of Potts has the same worst-case performance ratio under

precedence constraints. Nowicki and Smutnicki [15] proposed a faster 3
2 -

approximation algorithm with O(n log n) running time. By performing the

algorithm of Potts for the original and the inverse problem (i.e., in which

release dates are replaced by tails, and vice-versa) and taking the best so-

lution Hall and Shmoys [6] established the existence of a 4
3 -approximation.

They also proposed two polynomial time approximation schemes (PTAS).

The first algorithm is based on a dynamic programming algorithm when

there are only a constant number of release dates. The second algorithm

distinguishes large and small jobs with a constant number of large jobs. A

more effective PTAS has been proposed by Mastrolilli [13] for the single-

machine and parallel-machine cases. For more details on lateness problems

the reader is invited to consult the survey papers by Hall [7] and Kellerer [9].

Some works exist also on applications of the no-idle time scenario (see for

instance the paper by Irani and Pruhs [8] related to the power management

policies). In a recent paper, Chrétienne [3] mentioned several practical mo-

tivations to consider the no-idle time scenario. In particular, it may be very

expensive to stop the machine and restart the production after. Chrétienne

2
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[3] mentioned the applications where we need to use the machine at a high

temperature. In such a case, the no-idle time scenario allows to make signifi-

cant savings by avoiding the setup costs. Note that general useful properties

have been also proposed by Chrétienne, who gave an interesting study on

some aspects of the impact of the no-idle time constraint on the complex-

ity of a set of single-machine scheduling problems. An exact method has

been also proposed by Carlier et al [2] who have elaborated an extended

branch-and-bound algorithm for solving the studied problem. Despite the

interest to consider such an assumption, there are few papers dealing with

our problem. To the best of our knowledge there is no approximation algo-

rithm for problem P. Thus, this paper is a first attempt to successfully design

new approximation algorithms for this fundamental no-idle time scheduling

problem.

This paper is organized as follows. Section 2 shows that, subject to

some adaptations, some classical heuristics (Schrage algorithm and Potts

algorithm) keep their worst-case performance ratio under the no-idle time

scenario. In Section 3 the existence of a PTAS is proven. Finally, Section 4

concludes the paper.

2 Worst-case analysis of classical rules

2.1 Increasing the release dates

Let us consider the following generalized list scheduling algorithm (GLS):

Whenever the machine becomes available, schedule the first available job

in the list. Thus, algorithm Schrage is a GLS. Let C denote the makespan

obtained by using a GLS for P’. Obviously, C is a lower bound on the

makespan for any feasible schedule for P . Hence, the following relation

holds for every j ∈ J :

Sj ≥ C −
∑

j∈J

pj, (2)

where Sj is the starting time of job j in a feasible solution for problem P.

From (2) it can be deduced that release times can be increased without

modifying the optimal solution:

rj := max







rj, C −
∑

j∈J

pj







. (3)

This useful property was also reported in Chrétienne [3] and Carlier et

al [2].
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In the remainder of this paper TRANSFORM denotes the procedure that

consists of calculating C and updating the release dates for problem P ac-

cording to (3). The following lemma is the basis of the modifications of our

classical heuristics for problem P’ applied to problem P:

Lemma 1 After applying TRANSFORM the optimal solution for problem P

does not change and GLS yields a solution without idle time.

2.2 Folklore

Now we return our attention to two classical heuristics already proposed for

problem P’ by Schrage and Potts. For self-consistency we recall the princi-

ples of these heuristics and some important results on the relaxed problem

problem problem P’.

First, we recall the principle of the Schrage algorithm. It consists of schedul-

ing the job with the greatest tail from the available jobs at each step. At

the completion of such a job, the subset of the available jobs is updated and

a new job is selected. The procedure is repeated until all jobs are scheduled.

Assume that the jobs are reindexed such that Schrage yields the sequence

σ = (1, . . . , n). The job c which attains the maximum lateness in the Schrage

schedule, is called the critical job. Then the maximum lateness of σ can be

defined as follows:

Lσ
max = min

j∈B
{rj}+

∑

j∈B

pj + qc = ra +

c
∑

j=1

pj + qc (4)

where job a is the first job so that there is no idle time between the processing

of jobs a and c, i.e. either there is idle time before a or a is the first job to

be scheduled. The sequence of jobs a, a + 1, . . . , c is called the critical path

(or the critical block B) in the Schrage schedule. It is obvious that all jobs

j in the critical path have release dates rj ≥ ra. If c has the smallest tail in

B, then sequence σ is optimal. Otherwise, there exists an interference job

b ∈ B such that

qb < qc and qj ≥ qc for all j ∈ {b+ 1, b+ 2, ..., c − 1}. (5)

Moreover, the following relations holds:

Lσ
max − L∗

max < pb (6)

Lσ
max − L∗

max < qc (7)

where L∗
max is the optimal maximum lateness (see, e.g., Kise [10]).

4
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Finally, we recall the following useful lower bound, valid for every subset

F ⊂ J :

L∗
max ≥ min

j∈F
{rj}+

∑

j∈F

pj +min
j∈F

{qj}. (8)

2.3 Constant approximations

Let us call MSchrage the algorithm defined for problem P as follows. First, we

apply procedure TRANSFORM to increase the release dates as given in Equation

(3). Then, we apply the Schrage algorithm to the modified instance. From

Lemma 1 we can immediately conclude:

Theorem 1 Algorithm MSchrage has a tight worst-case performance ratio

of 2 for problem P.

To improve the performance of the Schrage algorithm for the relaxed

problem P’ (without no-idle time constraint) Potts proposed to run this

algorithm at most n times to some modified instances (Potts [16]). He

starts with the Schrage sequence. If there is an interference job b, then it is

forced to be scheduled after the critical job c in the next iteration by set-

ting rb := rc. Then, another Schrage sequence is computed on the modified

instance. The procedure is reiterated until no interference job is found or n

sequences have been constructed. Potts proved that his algorithm provides

at least a sequence with a worst-case performance ratio of 3
2 for problem P’.

For the original problem P we can extend the result obtained by Potts.

Let NI-P be the extension of the Potts algorithm by combining it with pro-

cedure TRANSFORM. It can be summarized as follows.

NI-P algorithm

(i). k := 0; I := (rj , pj , qj)1≤j≤n.

(ii). Update instance I by applying procedure TRANSFORM.

Apply the Schrage algorithm to I and store the obtained schedule σk.

Set k := k + 1.

(iii). If k = n or if there is no interference job in σk−1, then stop and

return the best generated schedule among σ0, σ1,..., σk−1.

Otherwise, identify the interference job b and the critical job c in σk−1.

Set rb := rc and go to step (ii).

5
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Theorem 2 Algorithm NI-P has a tight worst-case performance ratio of 3
2

for problem P.

Proof. The proof is quite similar to the proof for the worst-case perfor-

mance of the Potts algorithm, but we repeat it for the sake of completeness.

Nevertheless, NI-P and Potts may yield different outputs as it is illustrated

in the example below.

Let us consider the first schedule σ0 generated by Algorithm NI-P. If

there is no interference job, then σ0 is optimal. Otherwise, if qc ≤
L∗

max

2 or

pb ≤ L∗

max

2 , then σ0 is a 3
2 -approximation. Therefore, we can restrict our

analysis to the case where

qc >
L∗
max

2
and pb >

L∗
max

2
(9)

It follows that job b must be scheduled after c in the optimal schedule.

Otherwise,

L∗
max ≥ rb + pb + pc + qc > rb + pc + L∗

max, (10)

which leads to a contradiction.

By imposing rb := rc in the next iteration and after applying procedure

TRANSFORM according to Lemma 1 the optimal maximum lateness will not

increase and the new obtained schedule has no idle time.

At iteration k = 1, we obtain again a new Schrage sequence σ1 for the

modified instance I and the analysis is the same; either we have a 3
2 -

approximation or the update of rb is coherent with the optimal solution.

At the end of the procedure, if we stop because there is no interference job,

then we are guaranteed a 3
2 -approximation ratio. Otherwise, we obtain a

new interference job b′ 6= b, since b cannot be an interference job more than

(n− 1) times. In this case, from (9) we deduce that

pb′ <
L∗
max

2
. (11)

Hence, from Equation (6) the last sequence yields a 3
2 -approximation

ratio.

To prove the tightness of the bound and to illustrate the difference between

Potts and NI-P algorithms, we prefer to recall the last example in [16]. In

this example, given a very large number T , we have three jobs to schedule

such that r1 = 0, r2 = 1, r3 = T+1
2 , p1 = T−1

2 , p2 = T−1
2 , p3 = 1, q1 = 0,

q2 = T−3
2 and q3 = T−1

2 . Algorithm NI-P yields three schedules σ0, σ1 and

σ2 as it is depicted in Figure 1. For this example, the optimal maximum

lateness L∗
max = T + 1 can be obtained for sequence (2, 3, 1) whereas the

6
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algorithm gives a maximum lateness of 3T−1
2 . Hence, the worst-case perfor-

mance ratio can be close to 3
2 when T → +∞. Contrary to NI-P, the Potts

algorithm yields two sequences (1, 2, 3) and (1, 3, 2) for this instance when

considering problem P’.

PLEASE INSERT FIGURE 1 HERE

FIG 1. Tightness of the bound given by the NI-P algorithm

3 Existence of a PTAS

In this section we show the existence of a PTAS for problem P. We recall that

a PTAS is an algorithm that yields for a given ǫ > 0 a (1+ ǫ)-approximation

such that the time complexity is polynomial when ǫ is fixed. It is well-known

that the relaxed problem P’ admits a PTAS. As mentioned in Section 1 sev-

eral algorithms have been published and the most effective of them has

been recently developed by Mastrolilli [13], who proposed the clever idea

to cluster jobs into subsets of equivalent release dates and tails. He also

demonstrated that for each subset one can consider the jobs as large except

a small constant number of them. The corresponding transformations have

a small impact on the optimal objective function and the best solution of

the modified instance can be obtained in a polynomial time in n when ǫ is

fixed. The main result of this section is, using some ideas of Mastrolilli, to

show how this last result can be extended when the no-idle time constraint

is imposed.

First, given an instance I of problem P define L∗
max(I) as the optimal

maximum lateness for I and LH
max(I) the result of the MSchrage heuris-

tic. By dividing all data by LH
max

2 and using the fact that the MSchrage

sequence σ′ yields a 2-approximation, we may assume w.l.o.g. that

1 ≤ L∗
max(I) ≤ 2. (12)

This implies that for every j ∈ J we have 0 ≤ rj ≤ 2, 0 ≤ pj ≤ 2 and

0 ≤ qj ≤ 2.

Theorem 3 For a given ǫ > 0 and for every instance I there is an instance

I2 with the following properties:

(i) I2 can be constructed in polynomial time and has a constant number of

jobs when ǫ is fixed.

(ii) The optimal maximum lateness L∗
max(I2) is not too far away from L∗

max(I).

7
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Proof. First, construct an instance I1 by rounding down all release dates

and tails to the next multiple of ǫ. It follows that I1 has at most (1 + 2
ǫ
)

different release dates and (1 + 2
ǫ
) different tails. Moreover, by rounding

down these data, we have L∗
max(I1) ≤ L∗

max(I). Second, put all the jobs

with processing times less or equal to ǫ
2 and having the same release date

and the same tail into classes Ω1, Ω2,..., Ωl where l ≤ 9
ǫ2
.

Create a new instance I2 by greedily merging jobs from the same class

until the job size is greater than ǫ
2 . Therefore, all the new created jobs have

processing times between ǫ
2 and ǫ. From each class at most one job with

processing time < ǫ
2 remains. It can be easily seen that instance I2 has

only a constant number of jobs and can be constructed in polynomial time.

Hence, the first part (i) of this theorem is proven.

Let Ψ be the set of all the jobs having processing times > ǫ and denote

by S∗
j the optimal starting time of j ∈ Ψ for instance I1. Now construct

instances I ′1 and I ′2, respectively by setting for all j ∈ Ψ:

r̃j := S∗
j , p̃j := pj, q̃j := L∗

max(I1)− pj − S∗
j .

Note that Ψ is the same set in I ′1 and I ′2 and it contains no merged jobs.

Obviously, the following relation holds:

L∗
max(I

′
1) = L∗

max(I1) (13)

Consider now I2 and I ′2. For jobs /∈ Ψ nothing is changing. For jobs ∈ Ψ

we have r̃j ≥ rj , p̃j = pj, q̃j ≥ qj. Thus,

L∗
max(I2) ≤ L∗

max(I
′
2). (14)

Moreover, from (8) it follows that for each Ω ⊆ I ′1 we have

L∗
max(I

′
1) ≥ min

j∈Ω
{rj}+

∑

j∈Ω

pj +min
j∈Ω

{qj}. (15)

The only difference between instances I ′1 and I ′2 is, that some jobs of I ′1
are merged in I ′2. Thus, for any set Ω′ ⊆ I ′2 there exists a set Ω ⊆ I ′1 such

that

min
j∈Ω′

{rj}+
∑

j∈Ω′

pj +min
j∈Ω′

{qj} = min
j∈Ω

{rj}+
∑

j∈Ω

pj +min
j∈Ω

{qj}. (16)

Apply Algorithm MSchrage to instance I ′2 and consider the critical se-

quence. Let c denote the critical job, b the interference job and Λb the jobs

processed after b until c. Let Lσ′

max(I
′
2) denote the maximum lateness for I ′2

8
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using Algorithm MSchrage. Hence, Lσ′

max(I
′
2) = Sb + pb +

∑

j∈Λb
pj + qc. By

definition, the following two relations hold:

Sb < min
j∈Λb

{rj} (17)

and

qc = min
j∈Λb

{qj}. (18)

We conclude from (17) and (18) that L∗
max(I

′
2) ≤ Lσ′

max(I
′
2) < minj∈Λb

{rj}+

pb+
∑

j∈Λb
pj+minj∈Λb

{qj}. Therefore, by using (15) and (16) it can be de-

duced that L∗
max(I

′
2) ≤ L∗

max(I
′
1)+pb. Hence, by (13) and (14) the following

relation holds

L∗
max(I2) ≤ L∗

max(I1) + pb. (19)

Note that the last inequality becomes L∗
max(I2) ≤ L∗

max(I1) if there is

no interference job.

Assume now that pb > ǫ in I ′2. This implies that b ∈ Ψ and rc > rb = S∗
b .

Thus, either job c or, if c was merged in I ′2, a job with the same release time

and tail as c is processed after job b in the optimal solution for I1. One

can deduce that S∗
c ≥ S∗

b + pb. By definition, qb < qc and we know that

qb = L∗
max(I1) − pb − S∗

b and qc ≤ L∗
max(I1) − pc − S∗

c . Hence, qb − qc ≥

pc + S∗
c − pb − S∗

b > pc > 0 which leads to a contradiction. In conclusion, if

b exists then

pb ≤ ǫ. (20)

Recall that we have

L∗
max(I1) ≤ L∗

max(I). (21)

As a consequence of relations (19), (20) and (21), the following inequality

can be deduced

L∗
max(I2) ≤ L∗

max(I) + ǫ, (22)

and from (22) the second part (ii) of this theorem is verified.

Now, we are ready to introduce our PTAS for problem P. It can be summa-

rized as follows.

NI-PTAS algorithm

(i). Construct instance I2 according the rounding down and merging pro-

cedures mentioned in the proof of Theorem 3.

9
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(ii). Determine all the possible sequences for instance I2 and choose the

best no-idle time schedule produced by TRANSFORM.

(iii). Create a feasible schedule for instance I by moving all the jobs to the

right by at most ǫ.

The next theorem establishes the existence of a PTAS for problem P.

Theorem 4 Algorithm NI-PTAS is a PTAS for problem P.

Proof. The running time is polynomial by part (i) of Theorem 3 and since

there are only a constant number of sequences in instance I2. Indeed, it can

be observed that the number of jobs cannot be more than 4
ǫ
+ 9

ǫ2
. Hence, the

number of sequences generated in Step (ii) of Algorithm NI-PTAS cannot be

more than
⌊

4
ǫ
+ 9

ǫ2

⌋

! which can be considered as equivalent to (1
ǫ
)O( 1

ǫ2
). The

time complexity of Step (ii) of Algorithm NI-PTAS remains equivalent to

(1
ǫ
)O( 1

ǫ2
) since the construction of any sequence can be done in O( 1

ǫ2
) time.

It is also obvious to see that Algorithm MSchrage can be implemented in

O(n log n) time.

Moreover, the accuracy is good enough and by reconstructing a solution for

I we add at most 2ǫ to the maximum lateness (a loss of ǫ by moving jobs to

the right and a loss of ǫ by increasing the tails).

4 Conclusion

In this paper, we aimed at designing efficient approximation algorithms to

minimize maximum lateness on a single machine under the no-idle time sce-

nario. In the studied problem, jobs have different release dates and tails. In

a first step, we showed that the Schrage sequence can lead to a worst-case

performance bound of 2. Hence, we studied the Potts modified sequence in

order to obtain a 3
2 -approximation algorithm. Finally, based on modification

of the input we showed the existence of a PTAS for the studied problem.

As a perspective of our work, the extension of our algorithms to minimize

other criteria seems to be a very interesting study (for example, the weighted

completion time).
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